12 V, 3 A, Low V_{CE(sat)} PNP Transistor

ON Semiconductor's e^2 PowerEdge family of low $V_{CE(sat)}$ transistors are miniature surface mount devices featuring ultra low saturation voltage ($V_{CE(sat)}$) and high current gain capability. These are designed for use in low voltage, high speed switching applications where affordable efficient energy control is important.

Typical application are DC–DC converters and power management in portable and battery powered products such as cellular and cordless phones, PDAs, computers, printers, digital cameras and MP3 players. Other applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e²PowerEdge devices to be driven directly from PMU's control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers.

Features

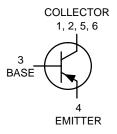
- High Current Capability (3 A)
- High Power Handling (Up to 650 mW)
- Low V_{CE(s)} (170 mV Typical @ 1 A)
- Small Size
- This is a Pb-Free Device

Benefits

- High Specific Current and Power Capability Reduces Required PCB Area
- Reduced Parasitic Losses Increases Battery Life

MAXIMUM RATINGS $(T_A = 25^{\circ}C)$

Rating	Symbol	Max	Unit
Collector-Emitter Voltage	V _{CEO}	-12	Vdc
Collector-Base Voltage	V _{CBO}	-12	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current – Continuous – Peak	I _C I _{CM}	-2.0 -3.0	Adc
Electrostatic Discharge	ESD	HBM Cla MM Clas	


Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

ON Semiconductor®

http://onsemi.com

$\begin{array}{c} \text{12 VOLTS} \\ \text{3.0 AMPS} \\ \text{PNP LOW V}_{\text{CE(sat)}} \text{ TRANSISTOR} \\ \text{EQUIVALENT R}_{\text{DS(on)}} \text{ 163 m} \Omega \end{array}$

SC-88/SOT-363 CASE 419B STYLE 20

DEVICE MARKING

V2 = Specific Device Code

M = Date Code

= Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
NSS12200WT1G	SOT-363 (Pb-Free)	3000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation T _A = 25°C	P _D (Note 1)	450	mW
Derate above 25°C		3.6	mW/°C
Thermal Resistance, Junction-to-Ambient	R _{θJA} (Note 1)	275	°C/W
Total Device Dissipation T _A = 25°C Derate above 25°C	P _D (Note 2)	650 5.2	mW mW/°C
	- 41>	-	
Thermal Resistance, Junction-to-Ambient	R _{θJA} (Note 2)	192	°C/W
Thermal Resistance, Junction–to–Lead 6	$R_{ heta JL}$	105	°C/W
Total Device Dissipation (Single Pulse < 10 sec.)	P _D Single	1.4	W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

ELECTRICAL CHARACTERIOTICS (11 = 25 °C diffess difference)					
Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage, (I _C = -10 mAdc, I _B = 0)	V _{(BR)CEO}	-12	-15	-	Vdc
Collector – Base Breakdown Voltage, (I _C = –0.1 mAdc, I _E = 0)	V _{(BR)CBO}	-12	-25	_	Vdc
Emitter – Base Breakdown Voltage, ($I_E = -0.1 \text{ mAdc}$, $I_C = 0$)	V _{(BR)EBO}	-5.0	-7.0	_	Vdc
Collector Cutoff Current, (V _{CB} = -12 Vdc, I _E = 0)	I _{CBO}	-	-0.02	-0.1	μAdc
Collector–Emitter Cutoff Current, (V _{CES} = -12 Vdc, I _E = 0)	I _{CES}	-	-0.03	-0.1	μAdc
Emitter Cutoff Current, (V _{CES} = -5.0 Vdc, I _E = 0)	I _{EBO}	-	-0.03	-0.1	μAdc
ON CHARACTERISTICS					
DC Current Gain (Note 3) ($I_C = -0.5 \text{ A}, V_{CE} = -1.5 \text{ V}$) ($I_C = -0.8 \text{ A}, V_{CE} = -1.5 \text{ V}$) ($I_C = -1.0 \text{ A}, V_{CE} = -1.5 \text{ V}$)	h _{FE}	100 100 100	180 165 160	- 300 -	
Collector – Emitter Saturation Voltage (Note 3) $ (I_C = -0.5 \text{ A}, I_B = -10 \text{ mA}) $ $ (I_C = -0.8 \text{ A}, I_B = -16 \text{ mA}) $ $ (I_C = -1.0 \text{ A}, I_B = -20 \text{ mA}) $	V _{CE(sat)}	- - -	-0.10 -0.14 -0.17	-0.160 -0.235 -0.290	V
Base – Emitter Saturation Voltage (Note 3) (I _C = -1.0 A, I _B = -20 mA)	V _{BE(sat)}	-	-0.84	-0.95	V
Base – Emitter Turn–on Voltage (Note 3) (I _C = -1.0 A, V _{CE} = -1.5 V)	V _{BE(on)}	_	-0.81	-0.95	V
Cutoff Frequency ($I_C = -100 \text{ mA}$, $V_{CE} = -5.0 \text{ V}$, $f = 100 \text{ MHz}$)	f _T	_	100	-	MHz
Output Capacitance $(V_{CB} = -1.5 \text{ V}, f = 1.0 \text{ MHz})$	C _{obo}	_	50	65	pF

FR-4, Minimum Pad, 1 oz Coverage.
 FR-4, 1" Pad, 1 oz Coverage.
 Pulsed Condition: Pulse Width < 300 μsec, Duty Cycle < 2%.

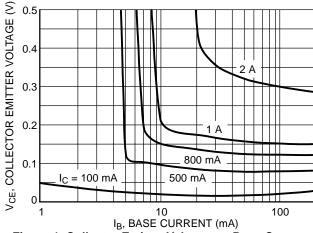


Figure 1. Collector Emitter Voltage vs. Base Current

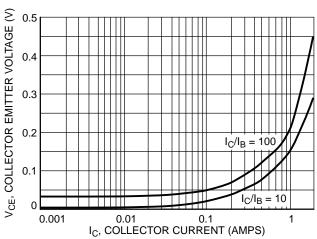


Figure 2. Collector Emitter Voltage vs. Collector Current

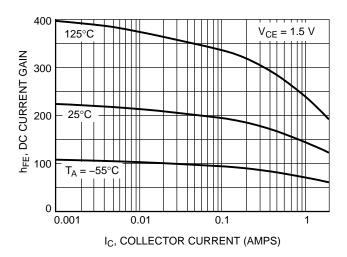


Figure 3. DC Current Gain vs. Collector Current

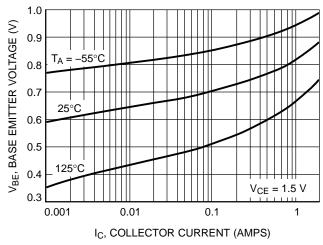


Figure 4. Base Emitter Voltage vs. Collector Current

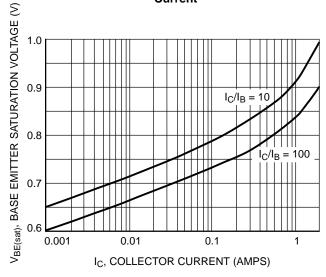


Figure 5. Base Emitter Saturation Voltage vs. Base Current

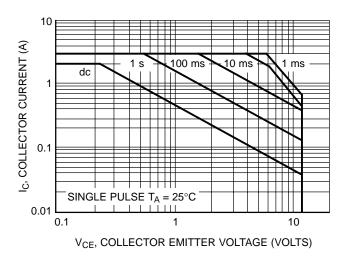


Figure 6. Safe Operating Area

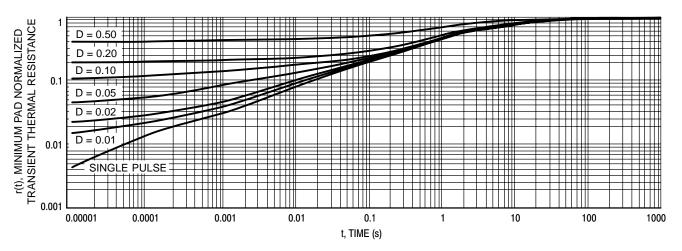
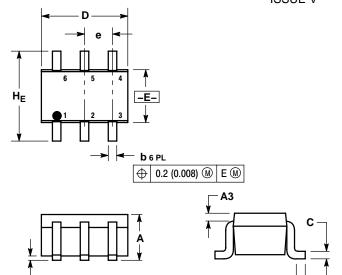
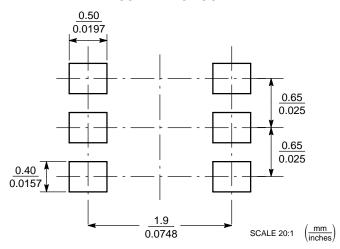



Figure 7. Normalized Thermal Response

PACKAGE DIMENSIONS

SC-88/SC70-6/SOT-363

CASE 419B-02 ISSUE V



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. 419B-01 OBSOLETE, NEW STANDARD 419B-02.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.80	0.95	1.10	0.031	0.037	0.043
A1	0.00	0.05	0.10	0.000	0.002	0.004
А3	0.20 REF			0.008 REF		
b	0.10	0.21	0.30	0.004	0.008	0.012
C	0.10	0.14	0.25	0.004	0.005	0.010
D	1.80	2.00	2.20	0.070	0.078	0.086
Е	1.15	1.25	1.35	0.045	0.049	0.053
е	0.65 BSC			0.026 BSC		
L	0.10	0.20	0.30	0.004	0.008	0.012
He	2.00	2.10	2.20	0.078	0.082	0.086

- STYLE 20:
 PIN 1. COLLECTOR
 2. COLLECTOR
 3. BASE
 4. EMITTER
 5. COLLECTOR
 6. COLLECTOR

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and was a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.